ГОСТ Р 70253-2022 Системы искусственного интеллекта на автомобильном транспорте. Системы управления движением транспортным средством. Требования к испытанию алгоритмов обнаружения и реконструкции структуры перекрестков

Обложка ГОСТ Р 70253-2022 Системы искусственного интеллекта на автомобильном транспорте. Системы управления движением транспортным средством. Требования к испытанию алгоритмов обнаружения и реконструкции структуры перекрестков
Обозначение
ГОСТ Р 70253-2022
Наименование
Системы искусственного интеллекта на автомобильном транспорте. Системы управления движением транспортным средством. Требования к испытанию алгоритмов обнаружения и реконструкции структуры перекрестков
Статус
Действует
Дата введения
2023.01.01
Дата отмены
-
Заменен на
-
Код ОКС
11.040.01

ГОСТ Р 70253-2022

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

СИСТЕМЫ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА НА АВТОМОБИЛЬНОМ ТРАНСПОРТЕ

Системы управления движением транспортным средством. Требования к испытанию алгоритмов обнаружения и реконструкции структуры перекрестков

Artificial intelligence systems in road transport. Vehicle traffic control systems. Requirements for testing algorithms for detecting and reconstructing the structure of intersections

ОКС 11.040.01*

Дата введения 2023-01-01

Предисловие

1 РАЗРАБОТАН Обществом с ограниченной ответственностью "Агентство искусственного интеллекта"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 164 "Искусственный интеллект"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 5 октября 2022 г. N 1056-ст

4 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ "О стандартизации в Российской Федерации". Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.rst.gov.ru)

Введение

Развитие технологий искусственного интеллекта (ИИ) на прикладном уровне происходит во всех уровнях жизни. На автомобильном транспорте разработка высокоавтоматизированных транспортных средств (ВАТС) основана на применении ряда алгоритмов, реализованных с использованием методов ИИ, для распознавания образов, восстановления сцены, точного позиционирования ВАТС на высокоточной карте, прогнозирования траекторий участников дорожного движения и др.

Для решения задачи точного позиционирования ВАТС на высокоточной карте окружающего пространства одним из алгоритмов является алгоритм обнаружения и реконструкции структуры перекрестков. При использовании сенсоров различной модальности для восприятия окружающей среды система управления ВАТС может использовать алгоритм обнаружения и реконструкции структуры перекрестков для точного позиционирования ВАТС. При обеспечении безопасности движения ВАТС важнейшую роль играет информация о наличии на дороге перекрестков и их структуре.

Для испытания алгоритмов обнаружения и реконструкции структуры перекрестков в целях обеспечения доверия к системам искусственного интеллекта для автоматизированного управления движением ВАТС (СИИАУД ВАТС), основанным на использовании методов ИИ, настоящий стандарт устанавливает общие принципы проведения испытаний. В настоящем стандарте приведены перечень весовых коэффициентов для показателей качества алгоритма и описание тестовых наборов данных с приведением сценариев испытаний описываемого алгоритма. Приведены требования к представительности (полноте и несмещенности) тестовых данных, демонстрационные тестовые наборы данных, правила формирования представительных тестовых наборов данных и принципы расширения (аугментации) тестовых наборов данных.

Настоящий стандарт является частью комплекса стандартов по установлению требований к применению технологий ИИ на транспорте для повышения доверия к технологиям ИИ, обеспечения безопасности дорожного движения, жизни и здоровья людей, сохранности их имущества, охраны окружающей среды и эффективности транспортных процессов.

1 Область применения

Настоящий стандарт распространяется на процессы испытания частных алгоритмов, реализованных с использованием методов искусственного интеллекта, подсистемы оценки дорожной обстановки - алгоритмов обнаружения и реконструкции структуры перекрестков в системах управления движением высокоавтоматизированных транспортных средств (ВАТС) высоких уровней автоматизации (4 и выше) (см. [1]).

Требования к испытаниям, установленные в настоящем стандарте, допускается применять исключительно к ВАТС категорий L, M, и N (см. [2]), эксплуатируемым на автомобильных дорогах.

Настоящий стандарт предназначен для применения при проведении всех типов испытаний алгоритмов обнаружения и реконструкции структуры перекрестков при управлении ВАТС системами искусственного интеллекта для автоматизированного управления движением ВАТС (СИИАУД ВАТС).

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 70249 Системы искусственного интеллекта на автомобильном транспорте. Высокоавтоматизированные транспортные средства. Термины и определения

ГОСТ Р 70250-2022 Системы искусственного интеллекта на автомобильном транспорте. Варианты использования и состав функциональных подсистем искусственного интеллекта

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ Р 70249.

4 Общие требования и методика проведения испытаний алгоритма обнаружения и реконструкции структуры перекрестков

Общие требования и методика проведения испытаний алгоритмов обнаружения и реконструкции структуры перекрестков - по ГОСТ Р 70250.

5 Показатели и критерии качества алгоритма обнаружения и реконструкции структуры перекрестков

Организация, осуществляющая тестирование алгоритма обнаружения и реконструкции структуры перекрестков, должна применять показатели и критерии для проведения оценки качества этого алгоритма (раздел 8 ГОСТ Р 70250-2022).

6 Весовые коэффициенты для оценки алгоритма обнаружения и реконструкции структуры перекрестков

Для конкретизации процедуры оценки качества алгоритма обнаружения и реконструкции структуры перекрестков в таблицах 1-5 приведены весовые коэффициенты для критериев и метрик качества. Весовые коэффициенты для критериев даны в первой графе. Сумма всех коэффициентов первой графы должна быть равна 1. Весовые коэффициенты для всех метрик качества заданного критерия даны в строке соответствующего критерия. Сумма всех коэффициентов для каждой строки должна быть равна 1.

Конкретные весовые коэффициенты для критериев и метрик фактора качества "Надежность" приведены в таблице 1.

Таблица 1 - Весовые коэффициенты фактора качества "Надежность"

Вес критерия

Критерий

Метрика 1

Н#-1

Метрика 2

Н#-2

Метрика 3

Н#-3

0,5

Н1

0,2

0,5

0,3

0,5

Н2

0,7

0,3

-

Конкретные весовые коэффициенты для критериев и метрик фактора качества "Сопровождаемость" приведены в таблице 2.

Таблица 2 - Весовые коэффициенты фактора качества "Сопровождаемость"

Вес критерия

Критерий

Метрика 1

С#-1

Метрика 2

С#-2

Метрика 3

С#-3

Метрика 4

С#-4

0,6

С2

0,1

0,5

0,2

0,2

0,4

С3

0,1

0,45

0,45

-

Конкретные весовые коэффициенты для критериев и метрик фактора качества "Удобство применения" приведены в таблице 3.

Таблица 3 - Весовые коэффициенты фактора качества "Удобство применения"

Вес критерия

Критерий

Метрика 1

У#-1

Метрика 2

У#-2

Метрика 3

У#-3

Метрика 4

У#-4

Метрика 5

У#-5

0,3

У1

0,6

0,4

-

-

-

0,2

У2

0,3

0,3

0,3

0,05

0,05

0,5

У3

0,25

0,25

0,25

0,25

-

Для фактора качества "Эффективность" используются следующие весовые коэффициенты: для критериев Э2 и Э3 - 0,25, для Э4 - 0,5.

Конкретные весовые коэффициенты для критериев и метрик фактора качества "Корректность" приведены в таблице 4.

Таблица 4 - Весовые коэффициенты фактора качества "Корректность"

Вес крите-

рия

Крите-

рий

Метрика 1

К#-1

Метрика 2

К#-2

Метрика 3

К#-3

Метрика 4

К#-4

Метрика 5

К#-5

Метрика 6

К#-6

Метрика 7

К#-7

Метрика 8

К#-8

0,25

К1

0,5

0,5

-

-

-

-

-

-

0,25

К2

0,1

0,05

0,1

0,05

0,15

0,25

0,2

0,1

0,25

КЗ

0,5

0,2

0,3

-

-

-

-

-

0,25

К4

1,0

-

-

-

-

-

-

-

Конкретные весовые коэффициенты для критериев и метрик фактора качества "Доверенность" приведены в таблице 5.

Таблица 5 - Весовые коэффициенты фактора качества "Доверенность"

Вес критерия

Критерий

Метрика 1

Д#-1

Метрика 2

Д#-2

Метрика 3

Д#-3

Метрика 4

Д#-4

0,4

Д1

0,4

0,4

0,1

0,1

0,6

Д2

0,4

0,1

0,4

0,1

Представленные в таблицах 1-5 весовые коэффициенты для критериев и метрик являются рекомендуемыми, однако при испытании частного алгоритма для конкретной задачи можно выбирать специфические коэффициенты для этой задачи.

7 Тестовые наборы данных и сценарии испытания алгоритма обнаружения и реконструкции структуры перекрестков

В настоящем разделе описаны тестовые наборы данных и сценарии испытания алгоритма обнаружения и реконструкции структуры перекрестков, а именно приведены требования к представительности (полноте и несмещенности) тестовых наборов данных, фрагменты тестовых наборов данных - демонстрационные наборы данных, правила формирования представительных тестовых наборов данных, включая, в случае необходимости, описание представительной совокупности тестовых сценариев, а также принципы расширения (аугментации) тестовых наборов данных.

7.1 Требования к представительности (полноте и несмещенности) тестовых наборов данных

Тестовый набор данных должен быть репрезентативен, содержать целевой набор изображений и ситуаций по отношению к каждому существенному фактору эксплуатации.

Для обеспечения представительности тестового набора данных необходимо:

а) проводить испытания алгоритма обнаружения и реконструкции перекрестков на тестовом наборе, подготовленном в соответствии со статистическими закономерностями распределения существенных факторов эксплуатации, что позволит обеспечить тестирование алгоритма на соответствие реальной картине распределения дорожно-транспортных ситуаций;

б) обеспечить повторные испытания со специально смещенной выборкой относительно количества перекрестков независимо от их реального статистического распределения;

1) выделить перекрестки, частота встречаемости которых в реальном окружении ВАТС ниже средней частоты встречаемости всех перекрестков более чем на 3 стандартных отклонения (редкие перекрестки);

Примечание - Уровень определения редких перекрестков является рекомендуемым и может быть изменен;

2) для выделенных перекрестков подготовить для испытаний "смещенную" выборку, которая позволяет лучше проанализировать поведение алгоритма в части редких перекрестков. Например, путем семплирования с изменением частоты соответствующих перекрестков приближена к среднему по всем вариантам перекрестков, или путем ввода весовых коэффициентов при оценке ошибки в соответствующих классах. Конкретный способ должен быть явно определен в программе испытаний алгоритма, до начала этих испытаний;

3) провести испытания с подготовленной выборкой, чтобы убедиться, что алгоритм обнаруживает и реконструирует структуру редких перекрестков с достаточным качеством.

Кроме того, при испытаниях алгоритма обнаружения и реконструкции перекрестков на предмет реагирования на редкие дорожно-транспортные ситуации можно пользоваться иными методами тестирования, включая применение весовых коэффициентов для различных существенных факторов эксплуатации, семплирования, аугментации (7.4), и другими техниками.

Такой принцип подбора тестового набора данных позволит обеспечить проверку возможностей алгоритма по обнаружению и реконструкции всех перекрестков в различных контекстах (вариантах комбинаций значений существенных признаков), поскольку для обеспечения доверия к результатам работы алгоритма необходимо, чтобы точность обнаружения и реконструкции не зависела от частоты встречаемости конкретного объекта распознавания при эксплуатации алгоритма.

При испытании СИИАУД необходимо руководствоваться принципами проведения испытаний: объективность испытаний, обоснованность применяемых методов (методик) испытаний, обеспечение единства измерений (аттестация методик измерений), воспроизводимость результатов испытаний и др.

7.2 Фрагменты тестовых наборов данных (демонстрационные наборы данных)

Основной набор тестовых данных, содержащий в себе фрагменты различных ситуаций и препятствий на дорогах, доступен по ссылке:

https://disk.yandex.ru/d/N-AxTFKsxjnhzw.

Тестовый набор данных описывает существенные факторы эксплуатации и содержит следующие подборки (множество файлов из демонстрационного набора, описывающих конкретную шкалу существенных признаков ситуации):

- категория автомобильной дороги;

- наличие примыканий и пересечений в одном уровне;

- профиль автомобильной дороги - наибольший продольный уклон;

- состояние дорожного покрытия.

Тестовый набор данных содержит тактико-технические характеристики видеорегистратора, метаданные видеосъемки (координаты ВАТС, пример видеодорожки с присутствием знаков дорожного движения, время съемки).

Приведенный классификатор является исчерпывающим перечнем существенных факторов эксплуатации для рассматриваемого алгоритма, при этом сценарии дорожно-транспортных ситуаций должны генерироваться на основе приведенного перечня существенных факторов эксплуатации при испытании алгоритма обнаружения и реконструкции структуры перекрестков с учетом тех или иных законов распределения подобных факторов.

7.3 Правила формирования представительных тестовых наборов данных (включая, в случае необходимости, описание представительной совокупности тестовых сценариев)

Прилагаемый к настоящему стандарту демонстрационный набор тестовых данных содержит следующий набор файлов:

- device.txt - данные и параметры самого записывающего устройства видеорегистратора внутри кабины ВАТС;

- gps.csv - данные о координатах ВАТС с приложенной видеодорожки, с указанием точных GPS-координат и времени записи;

- heading.csv, motion.csv, times.txt - файлы с технической информацией по приложенной видеодорожке;

- snapshots.zip - архив с примерами-скриншотами с приложенной видеодорожки с целевыми случаями соответствующих объектов на ней;

- video.mp4 - сама видеодорожка, содержащая в себе пример целевой ситуации/объекта с подтвержденным набором соответствующего содержания.

Сам тестовый набор данных должен содержать в себе исходный набор видеодорожек с выборкой подтвержденных соответствующих ситуаций. Формат файла должен быть доступен для применения подходов синтетического расширения обучающей выборки, описанных в 7.4.

7.4 Принципы расширения (аугментации) тестовых наборов данных

Для увеличения репрезентативности обучающей выборки допускается использование следующих методов:

- сдвиги;

- повороты;

- дополнительные линии на изображениях;

- добавление шума на изображения;

- блики;

- дефокус;

- сжатие и растяжение вдоль осей.

Также возможно использование более сложных методов аугментации в целях повышения обобщающей способности модели.

Библиография

[1]

SAE International. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles, J3016. - Revised 2021-04

[2]

Технический регламент

Таможенного союза

ТР ТС 018/2011

О безопасности колесных транспортных средств

УДК 615.841:006.354

ОКС 11.040.01

Ключевые слова: искусственный интеллект, автоматизация управления, СИИАУД, высокоавтоматизированные транспортные средства, алгоритм распознавания объектов, структура перекрестков